


1985), including larval size and shape (McEdward, 1986),
larval feeding mode (Strathmann, 1985), length of larval
development (Thorson, 1950; Vance, 1973; Strathmann,
1985; but see Mercier et al., 2013, for a discussion of
possible exceptions), and postzygotic survival (Strathmann,
1985) (reviewed in Moran and McAlister, 2009). One po-
tential drawback to using egg size as a predictor of these



unchanged (to 2 decimal points) by its inclusion or exclu-
sion. Among planktotrophs, we also separately examined
the relationship between egg energy and egg size within
three genera for which there were three or more species
represented (Arbacia, Echinometra, and Strongylocentro-
tus). Linear regression (SigmaPlot ver. 12, SysStat Soft-
ware, Inc.) was used to calculate scaling exponents and
goodness of fit (r2) from log-log transformed data (Jaeckle,
1995). Although many regression models are available, we
chose to log-transform both axes (equivalent to a power
function) to make our scaling exponents and goodness of fit
estimates easily comparable to previous work (e.g., Strath-
mann and Vedder, 1977; Jaeckle, 1995; Sewell and Mana-
han, 2001). McEdward and Morgan (2001) advocated using
a full allometric model rather than power functions (equiv-
alent to using log-log transformed data) because the allo-
metric model is more general in that it is not constrained to
pass through the origin; however, they found only minor
(“negligible”) differences between the scaling relationships
and goodness of fit estimates of the two models, and the egg
energy/egg volume relationship can be logically inferred to
pass through the origin. Deviation of scaling exponent slope
from a slope of 1.0 was tested using GraphPad Prism 6.

Results and Discussion

Our addition of 29 taxa to the dataset from McEdward
and Morgan (2001), while it increased the total number of
species by 62%, made no measureable difference in the
overall scaling exponent; the slope of the line regressing egg
energy on size for all 76 species combined was 1.09 (r2 �
0.98) (Fig. 1), identical to the results from the McEdward

and Morgan’s (2001) original, smaller dataset. On its face,
this result appears to support Jaeckle’s (1995) conclusion
that “free-spawned echinoderm eggs are proportionately
identical, i.e., all characters scale to egg volume�,







thought to accrue to larvae from larger eggs—for example,
shortened planktonic development, increased postzygotic
survival, or both—may not be realized when larger eggs
contain proportionally less energy. Finally, although infor-
mative on a broad, general level, the isometric scaling
relationship of egg volume and egg energy found across
echinoderms cannot be used to infer constraints operating
on the evolution of egg size at lower taxonomic levels, nor
to predict egg energy from egg size over small changes in
volume (McEdward and Morgan, 2001). As more egg size
and energy data become available from within closely re-
lated groups, differences among scaling exponents can be
used to gauge the strength of fecundity-size tradeoffs.
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Appendix (Continued)

Study Species Location

Egg
volume

(nl)
Protein

(ng)
Lipid
(ng)

Carb.
(ng)

Energy
(mJ)

Energy density
(mJ/nl)

Whitehill & Moran,
2012

Ophiocoma alexandri (P) E. Pacific, Panama 0.19 40.0 (4.0) 11.1 (0.4) 1.9 (0.1) 1.4 7.4

Poorbagher et al.,
2010a

Pseudechinus huttoni (P) Doubtful Sound,
New Zealand

0.72 61.9 (7.7) 15.2 (1.7) 5.3 (0.8) 2.2 3.0

Poorbagher et al.,
2010b

Sclerasterias mollis (P) Otago, New Zealand 0.98 10 (1.6) 3.6 (0.5) 1.4 (0.2) 4.0 4.1

Prowse et al., 2008 Patiriella regularis


